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3 ABSTRACT

3 A workshop on Very Low Frequency (VLF) Ambient Noise sponsored by the High

Gain Initiative (HGI) Program and the ASW Environmental Acoustics Support (AEAS)

Program was held at the Stennis Space Center on 20-21 September 1988. The workshop was

hosted by the Naval Ocean Research and Development Activity (NORDA). The unclassified

presentations made at the workshop are presented here; classified presentations can be found

in a companion document. Thepurpose of the workshop was to assess existing ambient noise

measurements and to determine the feasibility of reprocessing some of these data for

3 application to HGI objectives.
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IL INTRODUCTION

A significant number of measurements of acoustic and ambient noise environmental data
have been made over the past 15 years. Unfortunately, the processing, analysis, and reporting of
these measurements have not been pursued at a commensurate level. It seems that there are always
more funds available for measurement than for analysis. Hence, it is reasonable to assume that
present data which have not received complete processing attention may contain some undiscovered
gems that "ould be extremely valuable to a current program. Furthermore, these gems may be
"mined" at relatively low lost compared to the cost of fielding an experiment to reacquire the data.
The key, of course, is to scrutinize the data very closely to determine if the potential for gems

i existing in the data is high, the quality of the storage medium is adequate, and the necessary ancillary
information is available. This includes deployment logs, environmental measurements, and
descriptions of measurement conditions that include factors influencing the processing and analysis

I of the data. An additional consideration, some corporate knowledge must still exist concerning the
data. These concerns were the motivating factors for conducting this VLF ambient noise workshop.

I ~ ~There was an additional motivating factor for conducting this workshop. Such a workshop !/3

presents an excellent opportunity to summarize the current state of knowledge of VLF ambient

i noise and any critical deficiencies, at least in so far as the HGI program is concerned. Hence, VLF
ambient noise was reviewed in a focused way by inviting specific researchers to give presentations
on particular topics and to tailor those presentations to the needs of the HGI program. The topicsI were not limited to data alone, but included presentations on factors that influence the quality of
the data, such as system noise and flow noise, on acoustic propagation mechanisms that influence
the noise, noise source characteristics and distributions, and the processing of noise data by the
same algorithms that might be used to process signal data from a high gain array.

Due to the short time constraints for organizing and conducting this workshop, each speaker
was asked to prepare a viewgraph presentation on a particular topic and to provide the organizers
with an annotated hard copy of their viewgraphs. These viewgraphs are included in thcseI Proceedings. Two volumes, one unclassified and one classified, were compiled to facilitate ease
of distribution and handling.

Following this Introduction, a list of workshop participants can be found (Section IT). Section
I gives tie agenda of the two day workshop, and Section IV contains viewgraphs which give a

summary of the workshop and recommendations for future efforts. Section V contains the annotated
hard copies of the viewgraphs from the presentations by the speakers. Unfortunately, not all of the
presentations were annotated by the authors.I
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I . AGENDA
The presentations for this workshop covered several broad topics: Noise Field Mechanisms,

Modeling, System Noise, "Stationary" Horizontal Arrays, Towed Horizontal Arrays, Vertical
Arrays, and Data Processing Proposals. Presentation summaries consisting of viewgraphs with
annotations (when available) can be found in Section V of this report or in a companion classifiedL report. The presentations were given in the following order

HGIIAEAS VLF AMBIENT NOISE WORKSHOP
AGENDA

I 20 Sep 1988

I 0900 Opening Remarks: R. Wagstaff (NORDA)

0910 Welcome Address: Dr. E.R. Franchi

0920 Workshop Sponsors' Comments: N. Booth (ONT)/AEAS Rep. (ONR)

I NOISE FIELD MECHANISMS (J. Reese/NOSC)

0930 Influence of Noise Source Distributions and Propagation Mechanisms on Noise FieldI Directionality: M. Bradley (PSI)/R. Wagstaff (NORDA)
1000 Distant Storm Noise: J. Wilson (WAR, Inc.)

I 1030 BREAK

1045 Shelf Shipping Noise: W. Hodgkiss (MPL)

S 1115 Noise Floor Mechanisms: R.D. Gaul/A. Wittenborn (BSC)

MODELLNG (J. Reese/NOSC)

1330 AEAS Noise Modeling Program - Directions/Needs: E. Chaika

1400 Noise Holes-Measured and Modeled: R. Heitmeyer (NRL)

I SYSTEM NOISE (W. Hodgkiss/MPL)L 1430 System/Self/Flow Noise: J. Gottwald (J/G Assoc.)

1500 BREAK

1515 VLF Self Noise Observed in SURTASS*: J. Reese (NOSC)

1545 Ambient/Pseudo/Self Noise n VLA: P. Mikhalevsky/H. Freese (SAIC)

1615 ADJOURN

g * Viewgraphs are contained in a companion classified report.
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21 Sep 1988

I "STATIONARY" HORIZONTAL ARRAYS (S. Marshall/BBN)

0830 OMAT Beam Noise Data/Down Slope Conversion*: P. Herstein/P. Koenigs/W. Carey
(NUSC)

0900 LBA Data: J. Codona* (BTL)

I TOWED HORIZONTAL ARRAYS (S. Marshall/BBN)

0930 Towed Array Data Overview*: M. Bradley (PSI)/B. Palmer (NRL)/R. Wagstaff
(NORDA)

1000 LAMBDA 11 and r11 Results*: R. Wagstaff (NORDA)

t 1030 BREAK

1045 VLF-MF, MFA and QRSS Data*: W. Carey (NUSC)

i 1115 APL/JHU Measurements*: J. Lombardo (APL/JHU)

1145 SURTASS Noise Field Measurements: E. Holmstrom (COSP)/S. Kooney (NORDA)/
M. Bradley (PSI)

1215 LUNCH

VERTICAL ARRAYS (W. Carey/NUSC)

1330 VLA Measurements: W. Hodgkiss (MPL)

1400 Noise Model Filtering to Enhance Array Gain: T. Yang (NRL)

I 1430 BREAK

I DATA PROCESS1NG PROPOSALS (R. Wagstaff/NORDA)

1445 Opportunities for Analysis of Previously Recorded Data: J. Shooter/S. Mitchell
(ARL/UT)

1500 Other Proposals?

1600 Adjourn WorkshopI
I

i * Viewgraphs are contained in a companion classified report.
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I
I TV. SUMMARY

As a result of this workshop, VLF ambient noise was reviewed in light of HGI Program
objectives. It is evident that the general principles governing ambient noise between 10 and 100
Hz are well understood. This understanding was used to develop criteria for future program efforts.

I Toward this end, some existing data sets were determined as candidates for reprocessing tailored
to HGI investigations. The following set of viewgraphs summarizes the findings of the workshop.
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I
U V. PRESENTATIONS

This section contains copies of the viewgraphs used for the presentations made at the VLF
Ambient Noise Workshop. Annotations to the viewgraphs are also provided when available. As
previously indicated, some viewgraphs are omitted from this report, and are contained in a

i companion classified report.
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U OPENING REMARKSI
I
I
I
* R. WAGSTAFF (NORDA)
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*I INFLUENCE OF NOISE SOURCE
3I DISTRIBUTIONS AND

PROPAGATION MECHANISMS ON
II NOISE FIELD DIRECTIONALITYI
Ii

I
U M. BRADLEY (PSI) R. WAGSTAFF (NORDA)
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VLF AMBIENT NOISE
3/ ~Kibblewhite (1985)

I 200,i i " i i iii i i i

A - PE RRON E 1974 1 Rol. 2, F ig, 3)

o - BERMUDA 1966 (Ref. 6, Fig.2)
+ - ELEUTHERA (300 m) (Ref. 17. Fig. 4)

180 a TALPEY AND WORLEY]SITE 1 17.5 kt
O (Ref. 17. Fig. 12) SITE 2 5.1 kt

I - -LIMITS OF NEW ZEALAND SPECTRA
- HUGHES (Ref. 15) 15 m/s WAVE INTERACTIONS

1 . .4 WILSON (Ref. 7) 15 m/s ATMOSPHERIC TURBULENCE
",a.0 d GONCHAROV (Ref. 17, Fig. 16)
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Measured CHURCH ANCHOR Data I
This slide and the next show how noise directionality persists on shorter time scales. These

measurements differ by several hours but the patterns are much the same. 3
I
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MEASURED CHURCH ANCHOR DATA
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MEASURED CHURCH ANCHOR DATA

3 HORIZONTAL DIRECTIONALITY

N

I 005. 0

IS
POYOI31 IE,10H

OMILVL-7.Ul



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U
I

118 U



3w LU 0> z

1 0 z) LU 0
0l H Dl ~ ' C) C5

* (j <0 Z

0 LL. L L
LU 00 0 CZ
Wj LU WJ CC0

z. C,) Zx: 0
w0 0

3n 0 Z «j LU

0- IELZ< 0< a*- Zo 0 m.J HW i
3 Zn U~ 0j < j

w z L 00 J

0 Z ZO~i 00o >

3n >-W0 zO w~ z 00 X M

0CI Wz -<C/

ww caZ JZ c

a0 <WU3< wu<H

0 0 0 0W =

119



U

I
I
I
U
U
I
U
I
I
I
I
I
I
U
I

120 I



I
* DISTANT STORM NOISE

I
I
I
U J. WILSON (WAR, INC.)
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3 PRESENTATION OUTLINE

Dr. James H. Wilson
WAR, Inc.

I
EMPIRICAL SEA SURFACE AMBIENT

NOISE MODEL RESULTS

. Storm noise model shows
that distant storm noise
can provide "noise floor" for long
horizontal arrays looking
between ships

AT- SEA MEASUREMENT CONCEPT

- Inexpensive, low risk method to
collect "n time series data

S- Beam data to be transmitted via

ARGOSI
3 MEASUREMENT NEEDS FOR THEORIES

Lack of supporting environmental
I data s a major problem in

current data sets

I
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i STORM NOISE MODEL
U
I

N * SOURCE LEVEL DENSITY
I
I

I * SOURCE DIRECTIVITY PATTERN

I
I
*I * SOURCE SURFACE DISTRIBUTION

I
I

i * TRANSMISSION LOSS MODEL
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I MEAN AMBIENT NOISE

5 DUE TO WIND AND WAVES
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a ROCKING DIPOLEI
I

* SEPARATION INTO PURE DIPOLE & MONOPOLE TERMS
I

I R (9) J,(-H)cos(e (1-Jo(2H))/2

*+'H
t.

I
I

3 * DIPOLE ASSUMED TO ROCK BETWEEN H°

I
I
I
3I * SURFACE MONOPOLE/DIPOLE TRANSMISSION LOSS

I
I
I
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IIMSUREWMENT CONCEPT

COLLECT AND TRANSMIT DATA FOR LONG

PERIODS OF TIME AT SEVERAL LOCATIONS

I
I

*I MINIMIZE EXPENSE

I
Ij

MINIMIZE RISK OF LOSING DATA DURING

AT-SEA RECOVERY
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WAVES AIR-SEA INTERACTION

DRIFTING(WASID) BUOY

DEEP MOORED BUOY (DMB)

I ARGOS DATA TRANSMISSION SYSTEM
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i

K OCEAN SURFACE ENVIRONMENTAL PARAMETERS

I THAT ARE FEASABLE TO MEASURE

I
3 o Wind speed vertical profile (3 different heights)

i o Low frequency wave spectrum

o Barometric pressure

o Air and sea temperatureI
o Subsurface bubble density*

I o Ocean Turbulence*

1 o High frequency wave spectra*

3 o Microseismic activity*

* System currently not capable of measuring

i this parameter.
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I

I CONCLUSIONS

I * Currently, open ocean ambient noise measurements are not
adequate to determine source level density function to validate
theories of ocean surface physical mechanisms.

* Ambient noise measurements can yield ocean surface sound
levels only after propagation effects have been removed from

* the data.

• Some accepted (?) results from ambient noise analyses.U
- spectra have three regions with similar slopes within each region
- wind speed dependence has at least two physical regions

(divided by - 10 knots)
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I
I SHELF SHiPPiNG NOISE

I
I
I
3 W. HODGKISS (MPL)
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I
I
I
* Shelf Shipping Noise

I W. S. Hodgkiss

U
I

Marine Physical Laboratory
Scripps Institution of Oceanography

San Diego, CA 92152
I
I

HGI/AEAS VLF Ambient Noise
Workshop

I September 20, 1988
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Figure I. Ray trace for a 10 m source 5 km frzn
the edge of a 40 slope [1].
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(a) 114___ *mO LP ASSUME UPPER 1000 m

WITHIN SOUNO CHANNEL OFCANE

3o RAY ENTERS
CHANNEL AT NEAR
HORIZONTAL ANGLE

(b)~ LmSOUND SPEED

U 4ORIZONTALCHNE
RAY$ S-

1 REGION WITHIN CHANNEL
IASSUME 1000 ml

Figure 2. Conversion of high-angle raypaths to nearly hcrizontalI by reflection of f a sloping bottom (2].
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Figure 3. Intensity field plots for so.m- propagation frc, a
shallow source over the continental slope to a deepI ocean receiver 113).
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* 0

I 1000

2000.-I
U (b)

0

10 0 0L ,

1 2000j_

I I

0 20 40 60 80 100 120

3 RANGE (kin)

Figure 4. Propagation paths predicted by the numerical ray
mcdel GRASS for 22-n-deep sources at ranges of
(a) 70 kn, (b) 110 kn, and (c) 130 kn for source
angles within ±i0 = of the horizontal [14].
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Noise Floor Mechanisms U
This brief reviews an ambient noise measurement exercise that occurred in the Northeast I

Pacific in September and October 1975. A selection of about 20% of the acoustic data were analyzed
and results are given in a report by A.F. Wittenborn published by Tracor in April 1976. The reportI

has been declassified. Most of the viewgraphs in this presentation are taken or derived from that
report; all are unclassified.
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Bathymetry in the Vicinity Measurement Site

Ambient noise measurements were made fot two weeks at the "ACODAC Site." The location
is on an abyssal plain with a characteristic depth variability of about 200 fathoms within a range of
100 miles from the site. To the north is an east-west'range of scattered seamounts.
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F igure 18 (U). Bathymetry in the vicinity of the measuremen site.
The black lines are ship tracks discussed in text (U)
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Sound Speed Profile

The sound speed profile at the measurement site is devoid of irregular features. The bawse of
the sound channel (critical depth) is at 4,060 meters which is slightly more than 600 meters aboveI

the ocean bottom.
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Ftgure 2(U). Sound speed profile at the measurement site (U)
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Hydrophone Locations as a Function of Depth

Single hydrophones were placed vertically in the depth range from 3,460 meters to 4,850 I
meters (10 meters above the ocean bottom). Data were analyzed from eight hydrophones, two of
which were above the critical depth. 3
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Figure 1(U). Hydrophone locations as a function of depth or dis-
tance from the bottom for the CHURCH OPAL data presetted in thisU report (U)
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Ambient Noise Levels

Ambient noise levels at 50 Hz within the sound channel show little depth effect and average
about 75 dB. Near the ocean floor the levels range from about 50 dB at 5 knots wind speed to 60
dB at 15 knots. It is apparent that a distant source noise within the sound channel masks the locally
generated wind noise. The containment of distant source noise in the channel allows the wind noise
dependence to emerge at greater depths. However, the levels for 10 and 15 knot wind speeds likely
are contaminated because the curves are not vertical at the bottom.
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IFigure 15(C). Ambient noise levels as a function of depth at 50 Hz
fcr wi ad speeds of 5, 10. and 15 knots (U)
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I
Sound Pressure Spectrum Level versus Frequency

The curves attributed mainly to Wenz are shown for reference. Note that the wind dependenceI

curves show a maximum between 100 Hz and 1,000 Hz.I
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Suggested Revision of the "Wenz Curves" I
A set of curves are given that merge the CHURCH OPAL results with the Wenz curves for I

wind dependence. Levels below 40 dB at 10 Hz for up to 10 knot winds are inferred recognizing
the effect of distant source contamination below 100 Hz.
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I
Measured Spectra

The spectra obtained during passage of a freighter 100 miles away show the effect of distant I
source masking in the sound channel. The 10-15 dB ambient noise reduction with depth makes the
ship signature stand out against the background.
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Figure S-2(U). Spectra measured with the 3960 meter (upper curve)I and the 4850 meter (lower curve) hydrophones at the closest point
of approach of a freighter (German, ADOLF LEONHARDT, bulk carrier,I22 ,000 tons, 10,600 bhp, 15 knots) 100 miles from the receivers,
illustrating the lack of a significant depth effect for~a "not
distant" source. Local wind speed is 15 knots. (U
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The example shows the changes in level and character of the spectrum when a freighter passedl
overhead. The lower spectrum was typical of the period just before arrival of the ship.U

I

I
I

I

I
I

222I



I
i hW Sdences & SYdM

I

I
I
I

LiJIU
C;-

I v t

* 00

10, II...

FRE%'CEIzY hz ;

CO3RJEE 2S3/13/35 - 253!13!45

i Figure 6(U). Two examples of processed spectra as measured with
the 4850 meter hydrophone. The upper curve corresponds to the CPA
of a freighter passing overhead, 0.1 Hz frequency resolution 10 min-
ute integration time. The lower curve corresponds to distant ship-
ping (as defined in the text), 5 knot wind speed, 0.2 Hz frequency
resolution, 10 minute integration time (U)
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Estimated Source Level a Function of Frequency

The spectrum is the signature for a ship that passed within one mile of the ACODAC site.
The CHURCH OPAL database is a reservoir of single ship passages that can be fully documented
for signature characterization.
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Figure 21(U). Estimated source level as a function of frequency
for a Japanese bulk carrier (KANESHIZER MA.RU, 12,272 tons, 9400

brake horsepower. 14.75 knots) (U)
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Figure 2 shows an. estimate of the shipping distribution (HITS) for the Northeast Pacific (top) andthe Mediterranean (bottom) along with a towed array measurement site in each area. Although the
spatial shipping distributions clearly indicate more shipping in the Mediterranean than in theNortheast Pacific on a per unit area basis, the angular shipping distribution (mean number of ships
per degree bearing relative to the site) for Northeast Pacific is greater than that for the Mediterranean. 3
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I SOME DEFINITIONS

I

I ARRAY GAIN. AG

I AG = TEN TIMES THE LOGARITHM TO THE BASE TEN OF
THE RATIO OF THE SIGNAL-TO-NOISE RATIO AT
THE ARRAY OUTPUT TO THE SIGNAL-TO-NOISE
RATIO AT THE OUTPUT OF ONE ARRAY ELEMENTI

IF: ALL ELEMENTS SENSE THE SAME SIGNAL FIELD, AND
THE SIGNAL FIELD IS PERFECTLY COHERENT, AND
ALL ELEMENTS SENSE THE SAME NOISE FIELD, AND
THE NOISE FIELD IS ISOTROPIC, AND
ALL ELEMENTS ARE SEPARATED BY AT LEAST ONEHALF
WAVELENGTH. AND

I ALL ELEMENTS ARE GIVEN THE SAME WEIGHT.

THEN THE ARRAY GAIN REDUCES TO THE QUANTITY WHICH IS
CLASSICALLY REFERRED TO AS THE DIRECTIVITY INDEX. DI.

I IF ANY OF THESE CONDITIONS IS VIOLATED. THEN THE ARRAY
GAIN CAN BE GREATER THAN, LESS THAN. OR POSSIBLY THE
SAME AS THE DIRECTIVITY INDEX. WITHOUT DETAILED
KNOWLEDGE OF THE SIGNAL AND NOISE FIELDS IT IS NOT
POSSIBLE TO ACCURATELY PREDICT THE ARRAY GAIN.

NOTE: BOTH THE SIGNAL AND THE NOISE FIELD
I CHARACTERISTICS ARE REQUIRED - NOT JUST THE NOISE FIELD

I
I
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SOME DEFINITIONSI
COHERENCEI

THE MAGNITUDE SQUARED COHERENCE FUNCTION IS A REAL
VALUED QUANTITY DEFINED BY THE RATIO OF THE SQUARE
OF THE ABSOLUTE VALUE OF THE POWER CROSS SPECTRAL
DENSITY TO THE PRODUCT OF THE POWER SPECTRAL
DENSITY FUNCTIONS OF THE TWO PROCESSES AT EACH
FREQUENCY IN THE SPECTRUM.U

I THE NORMALIZED CROSSCORRELATION COEFFICIENT IS A
REAL VALUED QUANTITY DEFINED BY THE RATIO OF THE
CROSSCORRELATION FUNCTION TO THE SQUARE ROOT OF
THE PRODUCT OF THE AUTOCORRELATION FUNCTIONS OF
THE TWO PROCESSES AT ZERO TIME DELAY.

WHEN THE MAGNITUDE SQUARED COHERENCE FUNCTION IS
INTEGRATED OVER A BANDWIDTH EQUAL TO THAT USED TO
COMPUTE THE NORMALIZED CROSSCORRELATION COEFFICIENT.
THE SQUARE OF THE NORMALIZED CROSSCORRELATION
COEFFICIENT WILL EQUAL THE INTEGRATED MAGNITUDE SQUARED
COHERENCE FUNCTION.

II

I
I
I
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I

3 SOME DEFINITIONS

I ARRAY

U AN ARRAY. FOR THE PURPOSES OF COMPUTING ARRAY GAIN,
INCLUDES

O THE ACOUSTIC SENSOR OUTPUTS AVAILABLE FOR
BEAMFORMING

0 THE MECHANICAL STRUCTURE TO WHICH THE
ACOUSTIC SENSORS ARE ATTACHED OR IN WHICH
THEY ARE MOUNTED

I 0 THE ATTACHMENT OF THE ARRAY STRUCTURE TO A
SUPPORT STRUCTURE. TOW VESSEL OR THE OCEAN

3 BOTTOM

0 THE INTERACTION BETWEEN THE ARRAY STRUCTURE
I AND THE ENVIRONMENT

I
HYDROPHONE GROUPI

THE TERM HYDROPHONE GROUP REFERS TO N INTERCONNECTED
3 OMNIDIRECTIONAL ACOUSTIC SENSORS WHICH ACT AS ONE

ACOUSTIC SENSOR IN AN ARRAY

I
I
I
I
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1 140-

77 "a)

3 130 (S Nz)

3 (294 NH)
120 - (277 Hz)

3 (412 Ns)

S90,

a 100 200 30o 400 100

FREQUENCY (Hz)

EXAMPLE OF THE EFFECT OF 60 HERTZ NOISE
ON LOW FREQUENCY NOISE SPECTRA
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LEKG O IDII D CIRCI

I
U
I
I
I
I
I ELECTRONIC NOISE COHERENCE

I 60 HERTZ - COHERENCE = 1.0 WHEN ASSOCIATED WITH GROUNDING

PROBLEMS

O COH <1 WHEN ASSOCIATED WITH
~LEAKAGE OR INDIVIDUAL CIRCUIT

PROBLEMS

3DYNAMIC OVERLOAD - COHERENCE UNCHANGED OR DEGRADED DEPENDENT
ON CAUSE AND NOISE-TO-NOISE RATIO
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I
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I

I MECHANICALLY INDUCED NOISEI
MECHANISMS

1 I HYDROPHONE ACCELERATION SENSIVITY(3D)

£ I STRUCTURAL RADIATION

3 I TURBULENCE

I ARRAY STRUCTURE

I TENSION INDUCED VIBRATIONS

I
DESCRIPTIVE TERMS

I I VORTEX SHEDDING

5 I STRUM

I TBL FLOW

I BULGE WAVES

* 0 EXTENSIONAL WAVES

3
I
I
I
I
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U HYDROPHONE ACCELERATION SENSITIVITY

I
t WHEN STRUCTURAL VIBRATIONS MAY BE INDUCED IN AN ARRAYTHE SENSITIVITY OF THE INDIVIDUAL HYDROPHONES MUST BE

KNOWN IN THREE DIMENSIONS

i S THE INABILITY TO OR UNDESIRABILITY OF REDESIGNING A
HYDROPHONE TO REDUCE OR ELIMINATE THE ACCELERATION
SENSITIVITY IN A SPECIFIC DIRECTION MAY REQUIRE CHANGES
IN THE ARRAY STRUCTURAL DESIGN
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I
U

ISTRUCTURAL RADIATION

* VORTEX SHEDDING CAN CAUSE STRUCTURAL VIBRATIONS WHICH
IN TURN GENERATE OBSERVABLE ACOUSTIC RADIATION

* TOWED ARRAY SYSTEMS AND SHIP HULL MOUNTED ARRAY SYSTEMS
ARE PARTICULARLY SUSCEPTIBLE TO STRUCTURAL RADIATION
INDUCED Bv VORTEX SHEDD:NG

1
1I

1
I
I
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TURBULENCE

I NATURAL TURBULENCE CAN GENERATE PRESSURE GRADIENTS
ALONG AN ARRAY AT VERY LOW FREQUENCIES

3 S STRUCTURALLY INDUCED TURBULENCE WILL GENERATE PRESSURE
GRADIENTS JUST AS NATURAL TURBULENCE

3 S THE COHERENCE OF EITHER NATURAL OR INDUCED TURBULENCE
DEPENDS ON THE PROPAGATION VELOCITY OF THE TURBULENCE
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I
I
I
3 ARRAY STRUCTURE

3 UNEXPECTED ARRAY NOISE CAN BE GENERATED BY THE

CONSTRUCTION OF THE ARRAY

*MATERIALS

5 S CONFIGURATION

i ENVIRONMENT

* INSTALLATION
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TNION INDIE V IBA IONS

I
I
I
I
I

I TENSION INDUCED VIBRATIONS

I S VORTEX SHEDDING

I S MECHANICAL VIBRATIONS OF ATTACHED MACHINERY

3 S WAVE INDUCED FORCES

i WIND INDUCED FORCES

I A
I
I
I
I
I
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126

I 59.2

11., Na

STRUM

101 51.4

36J 43.2 3l.33 ~21.6 3.
10.4W

32.2 -I51.2 71.4
a0 32.2 2.3m -

0 0 O 0 40 S0 60 70 10 0 100

FREQUENCY (Hz)

I
EXAMPLE OF THE EFFECT OF CABLE STRUM ON3 lOU FREQUENCY NOISE SPECTRA
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U
U
I
i

The effects of "pops" observed aurally on the hydrophones of a towed array. The condition was I
caused by the oil-deficient hose forcing the strength members to make random contact with the
hydrophones. The "pops" disappeared when fill-fluid was added to the array. 5
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MECHANICAL NOISE

I (b)

AVG
l~cB ________________POWER

C MEDIAN
I

I 

BERM NUM ER•

STRIP-CHART RECORDING OF NOISES ON ONE HYDROPHONE CHANNEL (4a) A.'D

THE EFFECTS ON THE BEAMFCRMED OUTPUT (4b). POWER AVERAGE (top

dashed curve), MED IAN (s lid curve), AND dB AVERAGE (botomr das.t d

cL. :-.)e)
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HYDROMECHANICAL WAVE COHERENCEI
COHERENCE OF BULGE AND EXTENSIONAL WAVES IN OIL FILLED ARRAY
STRUCTURES IS ESSENTIALLY UNITY WHEN IT IS THE DOMINATE
NOISE SOURCE.

LEVELS ARE DEPENDENT ON DRIVING FORCES AND THE DETAILS OF
THE ARRAY STRUCTURE

I RUBBER-BOOTED. OIL FILLED HYDROPHONES CAN SUFFER FROM A FORr"
OF HYDROMECHANICAL WAVE GENERATION WHICH CAN LIMIT THEIR LOW
FREQUENCY DYNAMIC RANGE
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FIGURE 2 - POWER SPECTRAL DENSITY OF TURBULENT WALL
i PRESSURE FLUCTUATIONS FOR SPEEDS OF 1. *,

6. 1 AND 10 KNOTS
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SPECTRAL DENSITY AS A FUNCTION OF NONDIMENSIONAL
i FREQUENCY FOR A RECTANGULAR NYDROPHONE OF
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I ANALYSIS OF SVLA EXPERIMENT DATA

H. FREESE
Y. LEE
P. MIKHALEVSKY

3 SAIC
MCLEAN, VA.i

II
PRESENTED AT:

HGI/AEAS VLF AMBIENT NOISE WORKSHOP
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SVLA EXPERIMENT

DATA PROCESSING/BEAMFORMING

NOISE AND SI1ONAL CHARACTERISTICS

ESTIMATES OF ARRAY GAIN

SUMMARY
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3
I
a

3 ENVIRONMENT

U WIND SPEED NIL TO 25 KNOTS

S EASTERLY CURRENTS OF e CM/SEC * 100 METERS

3 IARRAY SEEMS TO BEHAVE AS A STICK WITH THE POSSIBLE
EXCEPTION OF TOP TWO SECTIONS.

I ARRAY TILT OF UP TO A FEW DEGREES

I ENVIRONMENT (SOUND SPEED) NOT UNUSUAL
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I
I
I
3 SOURCES OF NOISE

3 OWN SHIP (MACHINERY, WAVE SLAP)

FLOW INDUCED (STRUM, TURBULENCE)

MEASUREMENT SYSTEM (ELECTRONIC)

3 ARRAY MOTION (COUPLING TO SURFACE SHIP)

£
3 OTHER POINT SOURCES

SURFACE WAVES

1 SEISMIC ACTIVITY RADIATED FROM BOTTOM

39

I
I
I
I

I

I
1 391



U
U
U
U
I
U
I
1
U
I
I
I
I
I
U
I
I
I
I

392



3
I
I
g PARTITIONING OF NOISE ENERGY

UI OCEAN/MECHANICAL-ELECTRICAL

3 LOCAL/DISTANT

SHALLOW/DEEP

3 DISCRETE/CONTINUOUS

RESOVLEABLE/UNRESOLVEABLE

3 HOW IS NOISE ENERGY PARTITIONED AND WHAT ARE LEVELS?

HOW DOES THIS COMPARE TO SIGNAL ENERGY PARTIONING?

PROBLEM IS THE DETECTION OF M POINT TARGETS!

I
U
I
i
I
I
U
I
1 393



I
I
U
I
I
I
I
I
U
I
I
I
I
I
I
U
I
I

394 1



I
I

GENERAL NOISE CHARACTERISTICSI

WHEN VIEWED BY PLANE WAVE BEAMFORMER:

LEVEL AS A FUNCTION OF:

DEPTH - TIME
DEPTH - FREQUENCY
WAVENUMBER - FREQUENCY

STATI STICAL EIGENSTRUCTURE

I WHEN VIEWED BY MATCHED FIELD BEAMFORMER:

5 1LEVEL AS A FUNCTION OF:

RANGE - DEPTH - HORIZONTAL ANGLE

I
ACOUSTIC MODE STRUCTURE

I LEVEL AS A FUNCTION OF MODE NUMBER

5 COAVARIANCE OF MODE AMPLITUDES
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ARRAY GEOMETRYI
5 FREQUENCY SPACING (WAVELENGTHS) APERTURE (WAVELENGTHS)

16 .4 7.621 .53 10.0
27 .68 12.8
41 1.03 19.5
56 1.40 26.681 2.00 38.5

CURRONLY BOTTOM TEN ARRAY SECTIONS (OUT OF 12) HAVE BEEN USED IN

CURRRENT ANALYSIS
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I
I

SUMMARY OF PRELIMINARY RESULTSI
VLF NOISE

BELOW 15 HZ THE TOTAL NOISE IS DOMINATED BY:

NONACOUSTIC NOISE (STRUM AND TURBULENCE)
ACOUSTIC NOISE FROM WAVE SLAP ON MOORING SHIP

MOST OF THIS NOISE (IF IT DOES NOT DRIVE FRONT END
ELECTRONICS INTO SATURATION) CAN BE REMOVED WITH
WAVENUMBER FREQUENCY FILTERING IF ARRAY IS

3LARGE ENOUGH.

SURGES IN MOORING SHIP CAN COUPLE TO ARRAY

TRANSISTION REGION FROM HIGH ANGLE TO LOW ANGLE NOISE
AT ABOUT 30 HZ IN THIS EXPERIMENT, CONFORMS WITH CURRENT
NOTIONS ABOUT GENERATING MECHANISMS. THIS IS SUPPORTED3 WITH A RANGE - DEPTH ANALYSIS AS WELL.

NO EVIDENCE OF DISCRETENESS, BUT ARRAY DOES NOT HAVE
ENOUGH D.O.F. TO ASSESS THIS ISSUE VERY WELL. THEREFORE
RESULT IS NOT SURPRISING.

I
ARRAY GAIN

IARRAY GAIN OF APPROXIMATELY 10*LOG(N) ACHIEVEABLE WITH

THIS ARRAY

3REGION OF MINIMUM GAIN @ TRANSISTION FREQUENCY?
A FEW dB OF NOISE SUPRESSION APPEARS POSSIBLE WHEN ARRAY
IS FOCUSED ON TARGET. 6 dB APPEARS POSSIBLE AT LOW
FREQUENCIES BUT RESULTS ARE BIASED BY NON-ACOUSTIC
NOISE.
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I SURTASS NOISE FIELD
MEASUREMENTS

I
I
I
* E. HOLMSTROM (COSP) / S. KOONEY (NORDA) I

M. BRADLEY (PSI)
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! PROCESSING SYSTEM

i • DEDICATED SYSTEM (R-9 CONFIGURATION)

* i CAN SET ACCEPTANCE PARAMETERS FOR READING LEGS

m * STORES UPTO 3800 LEGS OF DATA

i o 10 FREQUENCIES OF INTEREST

n CAN SET ACCEPTANCE PARAMETERS FOR POLYGON
I FORMATION

[ * FORMS POLYGONS OF 3-9 LEGS

* * OUTPUTS:

STATISTICS TABLE
BEAM LEVEL PLOT

n RANK CORRELATION MATRIX
HORIZONTAL DIRECTIONALITY

* ARRAY HEADING ROSE
AZIMUTHAL ANISOTROPIC CUMMULATIVE

m DISTRIBUTION FUNCTION (AACDF)

9 AUTOMATIC MODE AND MANUAL MODE CAPABILITY
I
I
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I
VLA MEASUREMENTS

I
I
I

W. HODGKISS (MPL)
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I

*VLA Measurements

I
W. S. Hodgkiss

I
3 Marine Physical Laboratory

Scripps Institution of Oceanography
San Diego, CA 92152

HGI/AEAS VLF Ambient Noise Workshop

5 September 21, 1988
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Low Frequency Array

Characteristics

I 10-200 Hz Frequency Region

3 . 200 Hydrophones (20 Sections with 10 Hydrophones/Section)

e 7.5 m Hydrophone Spacing (X/2 at 100 Hz)

3 • 500 Hz Data Sampling Rate (12 Bits/Sample)

Additional Dynamic Range Provided by Programmable Gain Control
I Over Each Section

I • 12 kHz Navigation of Each Array Section
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I I*0

FIG. 11. Ambient noie spectra for five wnd speeds t hydro! phone depths near the sound chanel "a.

I'I-I

S° - V+:2 'IC 
'00 f- o4

I 4€ (N' INNI'

FIG. 1 . Ambie w" no se spectra for five %- od speeds at bydro-

phone depths appro nmatl" 170 th, ebo e tbe c ntca! dept.
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FIG.2 Ambient noise spectra or five win speeds t hydro-

phone depths about 150 m above the ea bottom.
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I
Mid-Frequency Data

i * October 1985 (NORDA VEKA 48-element vertical array)

* . 320 N, 124*W (Tape 05010, wind speed 6 kts)

e April/May 1986 (MPL 27-element vertical array)

* e 32 * N, 124 oW (Tape 86060, wind speed 22 kts)

* 320 N, 136*W (Tape 06247, wind speed 17 kts)

* 32 N, 150 ° W (Tape :#86180, wind speed 10 kts)
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Arroy Response -85010 Bin #59023f 200 Hz, KB w indow (c Ipho 1. 5)
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A rray Response - 86060 Bin#59

f 2ee Hz, K5 w Indow (alpha 1. 35)
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I RrroV Response - 86247 Bin #5490
f 200 Hz. KB window (olpho 1.5)
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I P.roy Response - 86180 Bin #5490
I 2ee Hz, KB window (olpho 1.5)
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I Rrroy Response -85010-8501? Bjn r5902

f =200 Hz, KB window Coipho z1.5)
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II NOISE MODAL FILTERING TO

II ENHANCE ARRAY GAIN

I
I
I
II T. YANG (NRL)
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* OUTLINE

U
I o LOW FREQUENCY AMBIENT NOISE IN THE ARCTIC

* - SPATIAL CHARACISMMTICS

I - MODAL REPRESENTATION

o FFECT1VENESS, OF MODE FILTERING IN THE ARCTICI
o EFFECTIVENESS OF MODE FILTERING IN THE PACIFIC
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I

i SPATIAL CHARACTERISTICS OF LOW FREQUENCY

AMBIENT NOISE IN THE ARCTIC

o NOISE LEVEL VS DEPTHI
o NOISE VERTICAL DIRECTIONALITYI

* o SPATIAL COHERENCE

II,
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I

I MODAL R- RESENTATION OF THE NOISE

I
OBESRVATION (R. KLVM):

3IF NOISE IS UNCORRELATED IN THE MODE SPACE, THEN
THE SPATIAL COHERENCE IS A FUNCTION OF PHONE
SEPARATION, AND IS APPROXIMATLEY A FUNCION OF D/

I

* PROOF: () epf(v4.
I P.Ln'. ) <, :e'' *

I
<S le A.I

* 9~(d): ot "a. A h~j~,Ii

I
In general, the spatial correlation depends on the modal

phase differences (k. - k. )r. Only for uncorrelated

I modes, i.e.,

do we get
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I

,INTERPRETATION

I LOW ((140 Hz) FREQ. ARCTIC DATA INDICATED

I THAT THE SPATIAL COHERENCE OF THE AMB3IENT

NOISE CAN BE REPRESENTED APPROXIATELY BY

3 A FUNCTION OF DI 1. THIS RESULT SUGGESTS
THAT AMBIENT NOISE IS UNCORRELATED IN THE

I MODE SPACE (LE., THAT THE NOISE MODAL

' COVARAANCE MATRIX IS DIAGONAL).

3 IMPLICATIONS:

I MODAL BEAMFORMING IS POTENTIALLY ROBUST FOR

* LOW S/N RATIO SIGNAL DETECTION AND LOCALIZATION
IN A COLORED NOISE ENVIRONMENT WHERE THE NOISE

I SOURCES ARE UNCORRELATED
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* CONCLUSIONS

I
5 o THE DOMINANT CONTRIBUTION OF ARRAY GAIN

COMES FROM MODES WHICH HAVE HIGH SIGNAL
i CONTENT AND LOW NOISE CONTENT. IT IS
I ESSENTIAL THAT THESE MODES ARE ACCURATELY

FILTERED IN ORDER TO ENHANCE ARRAY GAIN.3
o MODAL BEAMFORMING (MATCHED-MODE) ARRAY

GAIN IS OFTEN VERY CLOSE TO THE OPTIMUM

ARRAY GAIN FOR A LINEAR PROCESSOR IN A
COLORED NOISE ENVIRONMENT.U

o BEAMFORMING IN THE MODE SPACE (MODAL

I BEAMFORMJING IS ONE OF THEM) IS POTENTIALLY
* ROBUST FOf LOW S/N DEIEION AND LOCALI-

ZATION, IF THE NOISE COVARAINCE MATRIX

3 IS DIAGONAL
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I
I OPPORTUNITIES FOR ANALYSIS OF
* PREVIOUSLY RECORDED DATA

U
I
I
3 J. SHOOTER / S. MITCHELL (ARL:UT)
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The AEAS
VLF Data Base

'Presentation
I to

Ambient Noise HGI/AEAS Workshop
20-21 September 1988

5 Environmental Science Group

I Applied Research LaboratoriessI University of Texas at Austin
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I
I
I
'Background

*•Thirteen Years of Data Collection
and Analysis, 38 sites -- Archived at

II ARL:UT

I •Most Analysis was Limited to 25 - 600 Hz
a Low Sponsor interest < 25 Hz
- Poor VLF SNR at Low Freq on

II Standard Playback

Current Focuses
* . Noise Vertical Directionality

a Spatial Coherence (BB)
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II
U

*I The Analysis of Recordings below 25 Hz

3 1. Acoustic Data are recorded and calibrated
down to 5 Hz

* 2. Reproduction is possible using Flux
responsive heads developed by

3 Teledyne/Geotech
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SIGNAL

t -X17 R

CURRNI SOURCE

Flux-responsive head
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I

Magnetic Tape Playback

* • Conventional Head Output is proportional
to Flux Rate ( tape speed )

I
Flux Responsive Head Output is proportional

* to Flux Level
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I
U

iObjectives
* Similar to Objectives at Higher Frequencies

3 •Characterization of Spectral Levels

* 1. Variability over
Ocean Region
Depth
Season
Weather

* 2. Directionality and Spatial Coherence
at 5 - 50 HzI

3. Compare VLF levels with LF,MF

* Characterization of Noise Sources
- Source Level and Radiation Patterns

3 - Distant Wind, Storms, Microseisms

* VLF FL Sensitivity to Geoacoustic
3 Parameters, Bottom/Sub-bottom

I
I
3 637
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I

'ApproachU
* •Obtain Flux responsive heads and

Playback ElectronicsU
Focus on Three Sites
w - Parece Vela Basin 1 977
- Irminger Basin 1 982
- Cascadia Basin 1983I

* Digitize and Process Selected Data3 VLF band ( 5 - 50 Hz), 300 Hz,I
* •Interpret and Analyze results based on

FNOC Hindcast, Local Weather, HITS,
* Local Shipping, and careful Modelling
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